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概要
本研究では，全空間 R3 における電磁流体力学（MHD）方程式の定常問題について考察する．
本稿の目的は，スケール不変な斉次 Besov 空間 Ḃ

−1+3/p
p, q (1 ⩽ p < 3 かつ 1 ⩽ q ⩽ ∞) にお

ける解の存在，一意性，正則性および解析性を示すことである．特に解析性の証明においては，
parameter trick と呼ばれる手法を用いる．この手法は，半線形または準線形放物型方程式の解
の時空間解析性を証明するための手法として知られているが，本研究では parameter trickの手
法がMHD方程式のような非線形楕円型方程式に対しても有用であることを明らかにする．

1 導入
全空間 R3 において次のMHD方程式の定常問題を考える：

−∆u+ u · ∇u− b · ∇b+ ∇
(
π + 1

2
|b|2

)
= f, in R3,

−∆b+ rot(b× u) = g, in R3,

div u = div b = 0 in R3.

(MHD)

u = u(x) = (u1(x), u2(x), u3(x)), b = b(x) = (b1(x), b2(x), b3(x)), π = π(x)はそれぞれ，流体の
速度ベクトル，磁場，流体の圧力を表す未知関数である．一方 f = f(x) = (f1(x), f2(x), f3(x)), g =
g(x) = (g1(x), g2(x), g3(x))は与えられた外力を表す．本稿では，十分小さなスケール不変な空間
に属する外力 (f, g) ∈ Ḃ

−3+3/p
p, q (R3) × Ḃ

−3+3/p
p, q (R3)に対して，スケール不変なクラスの (MHD)の

解 (u, b) ∈ Ḃ
−1+3/p
p, q (R3) × Ḃ

−1+3/p
p, q (R3)の存在，一意性，および解析性を示す．ここで Ḃs

p, q(R3)
は斉次 Besov空間を表し，具体的な定義は次の §2にて与える．

MHD方程式は，任意の λ > 0に対して

(uλ(x), bλ(x), πλ(x)) =
(
λu(λx), λb(λx), λ2π(λx)

)
, (fλ(x), gλ(x)) =

(
λ3f(λx), λ3g(λx)

)
(1.1)

で与えられるスケール変換の下で不変であることがよく知られている．空間上で定義された関数の
Banach空間 X がノルム ∥·∥X を備えているとき，∥uλ∥X = ∥u∥X が全ての λ > 0に対して成り立
つならば，その空間 X はスケール不変であるという．例えば，Ln(Rn) および Ln/3(Rn) はそれぞ
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れ，MHD方程式の解空間および外力の空間としてスケール不変である．また，任意の n ⩽ p < ∞
に対して

Ḣn/2−1(Rn) ↪→ Ln(Rn) ↪→ Ḃ−1+n/p
p, ∞ (Rn) ↪→ Ḃ−1

∞, ∞(Rn)

が成り立つので，従来の Lebesgue空間よりも広いクラスの空間を扱うことができる．
b ≡ 0 とした定常 Navier–Stokes 方程式に関する研究は，これまでに数多く行われている．Finn

[6] は外部領域における定常問題に対して基本的な理論的枠組みを構築した．Heywood [8] は定
常 Navier–Stokes 方程式の解が，非定常問題の解の関数列の極限として得られることを示した．
Kaneko, Kozono, Shimizu [9]は 1 ⩽ p < nの範囲において，スケール不変な空間の Ḃ

−1+n/p
p, q (Rn)

における定常 Navier–Stokes 方程式の解の存在を示した．Tsurumi [16, 17]および Li, Yu, Zhu [13]
はこの結果を拡張し，n ⩽ p ⩽ ∞ のとき，定常 Navier–Stokes 方程式が Ḃ

−1+n/p
p, q (Rn) において

非適切であることを明らかにした．Navier–Stokes 方程式に比べて，定常 MHD 方程式の適切性お
よび実解析性に関する研究は，これまであまり広く行われていない．Zhang, Zu [18] および Cho,
Neustupa, Yang, [2] は，外力 f = g = 0の場合に対して，MHD 方程式および Hall-MHD 方程式
に関する Liouville型定理を証明した．また，Tan, Tsurumi, Zhang [15]は Hall-MHD 方程式の解
(u, b)が指数 p, q の値に依存して Ḃ

−1+n/p
p, q において適切，または非適切となることを示した．

2 主定理
主結果を述べる前にMHD方程式の構造についての注意を述べる．(MHD)の未知関数は 7個に対
して，方程式は合計で 8つ存在し，形式的には過剰決定系となっているため一般に可解性が得られな
い．しかし (MHD) の第 2 式の両辺に ∇· を作用させることにより，div g = 0 であれば div b が調
和関数となる．よって Liouvilleの定理より div b = 0が必要条件として出てくるため，本研究では
div g = 0を仮定することにより (MHD)の解の存在を示す．
主結果に用いる関数空間をここで定義する．ϕ ∈ C∞

0 (R3) を任意の ξ ∈ R3 に対して ϕ(ξ) ⩾
0, suppϕ =

{
ξ ∈ R3; 2−1 ⩽ |ξ| ⩽ 2

}
,

∞∑
j=−∞

ϕ(2−jξ) = 1 for ξ ∈ R3 \ {0}

なるものとする．Littlewood–Paleyの 2進単位分解 {
∆̇j

}
j∈Z を ∆̇j := F−1ϕ(2−j ·)F for all j ∈ Z

によって定義する．ただし F は Fourier変換を表す．s ∈ R, 1 ⩽ p ⩽ ∞, 1 ⩽ q ⩽ ∞に対して，斉
次 Besov空間 Ḃs

p, q = Ḃs
p, q(R3) :=

{
f ∈ S ′(R3)/P(R3); ∥f∥Ḃs

p, q
< ∞

}
で定義し，

∥f∥Ḃs
p, q

:=



 ∞∑
j=−∞

(
2sj

∥∥∆̇jf
∥∥

Lp

)q

1/q

, 1 ⩽ q < ∞,

sup
j∈Z

2sj
∥∥∆̇jf

∥∥
Lp , q = ∞,

(2.1)

のノルムを備える．ここで S ′(R3)は R3 上の Schwartz空間の双対空間，P(R3)は R3 上の多項式
関数の集合を表す．また本研究ではソレノイダルな関数を扱うため，divergence-free な斉次 Besov
空間を Ḃs

p, q :=
{
u ∈ Ḃs

p, q; div u = 0
}のように記すこととする．



最初の結果は (MHD)の解の一意存在性についての定理である．

定理 2.1. 各 1 ⩽ p < 3, 1 ⩽ q ⩽ ∞ に対してある δ = δ(p, q) > 0 が存在して (f, g) ∈
Ḃ

−3+3/p
p, q × Ḃ−3+3/p

p, q が
∥f∥

Ḃ
−3+3/p
p, q

+ ∥g∥
Ḃ

−3+3/p
p, q

< δ (2.2)

を満たすならば，(MHD)の解 (u, b) ∈ Ḃ−1+3/p
p, q × Ḃ−1+3/p

p, q が存在する．さらに η = η(p, q) > 0が
存在して (u, b)および (v, c)が (MHD)の Ḃ−1+3/p

p, q × Ḃ−1+3/p
p, q における 2組の解であって

∥u∥
Ḃ

−1+3/p
p, q

+ ∥b∥
Ḃ

−1+3/p
p, q

⩽ η, ∥v∥
Ḃ

−1+3/p
p, q

+ ∥c∥
Ḃ

−1+3/p
p, q

⩽ η, (2.3)

を満たすならば，u ≡ v かつ b ≡ cが従う．

注意 2.2.

(i) Ḃ−1+3/p
p, q および Ḃ

−3+3/p
p, q はそれぞれ解 u, b と外力 f, g に関してスケール不変な関数

空間である．すなわち，(1.1) において定義した関数に対し ∥uλ∥
Ḃ

−1+3/p
p, q

= ∥u∥
Ḃ

−1+3/p
p, q

,
∥fλ∥

Ḃ
−3+3/p
p, q

= ∥f∥
Ḃ

−3+3/p
p, q

が成立する．
(ii) b ≡ 0 とすれば Kaneko, Kozono, Shimizu [9] の結果に対応するため，定理 2.1 は彼らの
結果の拡張となっている．また，Tan, Tsurumi, Zhang [15] では Besov 空間の第 3 指数を
1 ⩽ q ⩽ 2のみで適切性を示したのに対し，定理 2.1では 1 ⩽ q ⩽ ∞を任意に取ることがで
きる．

(iii) Tsurumi [16, 17], Li, Yu, Zhang [13]の結果により，定理 2.1は最良な結果である．
(iv) 斉次 Besov 空間 Ḃs

p, q は一般には Banach 空間ではない．しかし s < 3/p もしくは (s, q) =
(3/p, 1)の場合は，定義を適当に取り替えることにより通常の Banach空間となる．特に，定
理 2.1で得られた解は上記の条件を満たす Besov空間に属す．

次に定理 2.1で得た解が解析的であることを示す．

定理 2.3. 1 ⩽ p < 3, 1 ⩽ q ⩽ ∞とする．定数 ε = ε(p, q) > 0, ρ = ρ(p, q) > 0が存在し，次を満
たす．(f, g) ∈ Ḃ

−3+3/p
p, q × Ḃ−3+3/p

p, q に対して

τyf = f(· − y) =
∞∑

m=0

∑
|β|=m

1
m!

(
∂

∂x

)β

u(·)(−1)myβ in Ḃ−3+3/p
p, q , (2.4)

τyg = g(· − y) =
∞∑

m=0

∑
|β|=m

1
m!

(
∂

∂x

)β

b(·)(−1)myβ in Ḃ−3+3/p
p, q (2.5)

がそれぞれ解析的であるならば

∥u∥
Ḃ

−1+3/p
p, q

+ ∥b∥
Ḃ

−1+3/p
p, q

⩽ ε (2.6)



を満たす (MHD)の解 (u, b)は

u(· − y) =
∞∑

m=0

∑
|β|=m

1
m!

(
∂

∂x

)β

u(·)(−1)myβ in Ḃ−1+3/p
p, q , (2.7)

b(· − y) =
∞∑

m=0

∑
|β|=m

1
m!

(
∂

∂x

)β

b(·)(−1)myβ in Ḃ−1+3/p
p, q (2.8)

を全ての y ∈ Bρ(0)で満足する．

注意 2.4.

(i) 特に解 (u, b) ∈ Ḃs

p, q̃
× Ḃs

p, q̃
が s > 3/p, 1 ⩽ q̃ ⩽ ∞ に対して成り立てば，(2.7),

(2.8) は R3 上で Taylor 展開可能である．実際，実補間定理を用いることにより u, b ∈(
Ḃ−1+3/p

p, q , Ḃs

p, q̃

)
θ, 1

= Ḃ3/p
p, 1 ↪→ L∞ となり，uおよび bを通常の関数と見做すことができる．

ただし θ = (1 − 3/p+ s)−1 である．
(ii) 定理 2.3 では解の小ささを仮定しなければならない．しかし一方で，Friedman [7] などの
非線形楕円型方程式の古典的な方法による解析性の結果では u の小ささは必要としないが，
u ∈ C2+θ の高い Hölder正則性を必要とする．我々の結果は Besov空間の低い正則性のみで
解析性を求めることができる部分に利点がある．

(iii) 今回用いる証明手法では収束半径 ρを ∥f∥
Ḃ

−3+3/p
p, q

および ∥g∥
Ḃ

−3+3/p
p, q

のみで具体的に表すこ
とはできない．

3 証明の概略
証明には “parameter trick” と呼ばれるものを用いる．この方法は，Angenent [1], Es-

cher–Prüss–Simonett [4, Section 7 and 8], Escher–Simonett [5], Prüss–Simonett [14, Section
5.2], Denk [3, Section 7.2], Kozono–Shimizu [11], Kozono–Kunstmann–Shimizu [10]らによって
放物型方程式に対して確立された方法である．Kozono–Kunstmann–Shimizu [10] は，双線形評価
が成立するような一般のバナッハ空間において，非定常 Navier–Stokes 方程式の解が空間変数に関
して解析的であることを示した．彼らの方法もまた，この parameter trickに基づいている．さらに
Kozono–Shimizu [12] は，Navier–Stokes 方程式の定常解がスケール不変な斉次 Besov 空間におい
て，その解が解析的であることを示した．放物型方程式の場合には，時間方向の解析性は，尺度変換
uλ(t) = u(λt)を表すパラメータ λを導入することによって示される．一方，定常問題の場合には，
平行移動 uy(x) = u(x− y)を表すパラメータ y を導入することにより，空間変数に関する解析性が
示される．

(MHD)を次の積分方程式に書き換える：{
u = K(u⊗ u− b⊗ b) + P (−∆)−1f,

b = K ′(u⊗ b− b⊗ u) + (−∆)−1g,
(E)



ここで K := −P (−∆)−1 div, K ′ := −(−∆)−1 div であり，P = I + ∇(−∆)−1 div は Helmholtz
射影を表す．
写像 H: R3 ×

(
Ḃ−1+3/p

p, q

)2
−→

(
Ḃ−1+3/p

p, q

)2
を定義する:

H(y, W ) :=
(
w −K(w ⊗ w − d⊗ d) − P (−∆)−1τyf
d−K ′(w ⊗ d− d⊗ w) − (−∆)−1τyg

)
, W :=

(
w
d

)
. (3.1)

このとき U = (u, b) を (E) の解で ∥U∥(
Ḃ

−1+3/p
p, q

)2 ⩽ ε を満たすものとすると H(0, U) = 0 で
ある．特に H(0, 0) = 0 は自明解に対応する．H の W に関する Fréchet 微分は h = (h1, h2) ∈(

Ḃ−1+3/p
p, q

)2
に対して

DWH(y, W )h =
(
h1 −K(h1 ⊗ w + w ⊗ h1) +K(h2 ⊗ d+ d⊗ h2)
h2 −K ′(h1 ⊗ d+ w ⊗ h2) +K ′(h2 ⊗ w + d⊗ h1)

)
(3.2)

と表される．DWH(0, U) が
(

Ḃ−1+3/p
p, q

)2
上で同相写像であることを示す．これを示すには，各

ζ ∈
(

Ḃ−1+3/p
p, q ∩ Ḃs

r, q̃

)2
に対し，次の線形方程式 (3.3)の解 h ∈

(
Ḃ−1+3/p

p, q ∩ Ḃs

r, q̃

)2
が一意に存在

すればよい．

DWH(0, U)h =
(
h1 −K(h1 ⊗ u+ u⊗ h1) +K(h2 ⊗ b+ b⊗ h2)
h2 −K ′(h1 ⊗ b+ u⊗ h2) +K ′(h2 ⊗ u+ b⊗ h1)

)
= (I − T )h = ζ,

(3.3)

ここで，
Th =

(
K(h1 ⊗ u+ u⊗ h1) −K(h2 ⊗ b+ b⊗ h2)
K ′(h1 ⊗ b+ u⊗ h2) −K ′(h2 ⊗ u+ b⊗ h1)

)
である．双線形評価を次の補題として与える．

補題 3.1 ([9, Lemma 2.3]). 1 ⩽ p < 3, 1 ⩽ q ⩽ ∞ とする．任意の u, v ∈ Ḃ−1+3/p
p, q に対して

K(u⊗ v) ∈ Ḃ−1+3/p
p, q であり

∥K(u⊗ v)∥
Ḃ

−1+3/p
p, q

⩽ C∥u∥
Ḃ

−1+3/p
p, q

∥v∥
Ḃ

−1+3/p
p, q

(3.4)

を満たす．ただし C = C(p, q)は u, v と独立である．

補題 3.1はK ′ についても適用可能であることに注意する．実際，Helmholtz射影 P は Lp 上では
1 < p < ∞のみで有界であるが，斉次 Besov空間 Ḃs

p, q 上では全ての s ∈ R, 1 ⩽ p ⩽ ∞, 1 ⩽ q ⩽ ∞
に対して有界作用素となる．
補題 3.1より

∥Th∥(
Ḃ

−1+3/p
p, q

)2 ⩽ C∥U∥(
Ḃ

−1+3/p
p, q

)2∥h∥(
Ḃ

−1+3/p
p, q

)2

であり，T ∈ L
(

Ḃ−1+3/p
p, q

)2
が従う．∥U∥(

Ḃ
−1+3/p
p, q

)2 ⩽ εであったので，εを十分小さく取ることに

より ∥T∥
L
(

Ḃ
−1+3/p
p, q

)2 < 1とできる．ゆえに Neumann級数の定理より (I − T )−1 ∈ L
(

Ḃ−1+3/p
p, q

)2

であって
∥h∥(

Ḃ
−1+3/p
p, q

)2 ⩽
∥∥(I − T )−1∥∥(

Ḃ
−1+3/p
p, q

)2∥ζ∥(
Ḃ

−1+3/p
p, q

)2



を得る．
H(y, W )は R3 ×

(
Ḃ−1+3/p

p, q

)2
上解析的であり H(0, U)を満たし，DWH(0, U)が

(
Ḃ−1+3/p

p, q

)2

上同相写像であったので，陰関数定理よりある定数 η, ρ > 0および ψ(U) = 0を満たす解析的な写像

ψ: Bρ(0) → Nη(U) :=

V ∈
(

Ḃ−1+3/p
p, q

)2
; ∥V − U∥(

Ḃ
−1+3/p
p, q ×Ḃs

r, q̃

)2 < η


が存在し，方程式

H(y, W ) = 0 for all (y, W ) ∈ Bρ(0) ×Nη(U) (3.5)

の解W は y = 0の近傍において一意的にW = ψ(y)と表される．すなわち

H(y, ψ(y)) = 0 for all |y| < ρ (3.6)

である．一方 Uy(x) = (uy(x), by(x)) = (u(x− y), b(x− y))は

H(y, Uy) = 0 for all y ∈ R3 (3.7)

を満たす．Besov空間は並行移動に関してノルム不変，すなわち

∥uy∥
Ḃ

−1+3/p
p, q

= ∥u∥
Ḃ

−1+3/p
p, q

, ∥by∥
Ḃ

−1+3/p
p, q

= ∥b∥
Ḃ

−1+3/p
p, q

なので，(2.2) より Uy ∈ Nη(U) が十分小さな δ に対して従う．(3.6), (3.7) および陰関数の一意性
から

ψ(y) = Uy for all |y| < ρ (3.8)

が成立する． (
∂

∂y

)β

ψ(y) = (−1)|β|
(
∂

∂x

)β(
u(x− y)
b(x− y)

)
(3.9)

が全ての多重指数 β ∈ N3 に対して成り立つので

ψ(y) =
∞∑

m=0

∑
|β|=m

1
m!

(
∂

∂y

)β

ψ(0)yβ

=
∞∑

m=0

∑
|β|=m

1
m!

(−1)m

(
∂

∂x

)β[
u(x)
b(x)

]
yβ (3.10)

が従う．すなわち

u(x− y) =
∞∑

m=0

∑
|β|=m

1
m!

(−1)m

(
∂

∂x

)β

u(x)yβ in Ḃ−1+3/p
p, q ∩ Ḃs

r, q̃
(3.11)

b(x− y) =
∞∑

m=0

∑
|β|=m

1
m!

(−1)m

(
∂

∂x

)β

b(x)yβ in Ḃ−1+3/p
p, q ∩ Ḃs

r, q̃
(3.12)

が成り立つことを意味する．
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